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It is well known that sound absorption in finite media is caused mainly by fluid 
viscosity and thermal conductivity. Kirchhoff [I] developed a general theory de- 
scribing the mechanism of such absorption and applied it to the particular case of 
sound propagating in tubes. Rayleigh [2] used Kirchhoff's theory to study sound 
absorption by a porous wall with normal incidence of the sound wave. Konstantinov 
[3] also used Kirchhoff's theory to solve the problem of sound absorption by a rig- 
id, isothermal (with infinite thermal conductivity) and a thermally insulating 
plane wall with arbitrary angle of sound-wave incidence. A natural extension of 
these efforts is a study of sound absorption on the boundary dividing two liquids. 
Aside from its scientific interest, such a problem is of practical significance, 
for example, in hydroacoustics or in creating methods for visualization of sound 
in gases and liquids [4]. The present study will attempt to solve this problem. 
The results can be applied to both liquid and solid (resinlike) materials. 

I. In the absence of sonic oscillations let the boundary dividing the two liquids form 
a horizontal plane, so that for brevity we may refer to the upper and lower media. In the upper 
medium a planar sinusoidal sound wave falls on the phase boundary. We introduce a Cartesian 
coordinate system such that the phase boundary lies in the plane xz, the incident, reflected, 
and refracted rays lie in the plane xy, and the y axis is directed into the upper medium. The 
temperature and velocity fields in each medium are described by linearized hydromechanics 
equat ions 

I as av I grad P + ~Av + --g- v grad (div v), -~- + div v = O, 
ot p ( 1 . 1 )  

or ~,-- t Os ~c v ~ P a T ,  
o-F= -~ ot + AT,  s =  c~ P 

where v is velocity; t is time; O, density; v, kinematic viscosity; ~, thermal conductivity; 
y = Cp/CV; Cp and c V are the specific heats of the liquid at constant pressure and volume, 
respectively; e is the thermal expansion coefficient; c is the speed of sound (Laplacian) ; s 
is the acoustic compression of the medium; T and P are the acoustic temperature and pressure. 

In the future we will assume that inboth media the conditions 

6,os << t ,  (Zos << 1 (1.2) 

are satisfied, where X is the thermal diffusivity. 

The solution of Eq. (1.1) corresponding to the proposed problem must have a form such 
that the dependence on time is given by a factor exp(--ht), and the dependence on longitudinal 
coordinate x by a factor exp(mx), where h = im, m = iksin 8, m is the angular frequency of 
the oscillations, k = m/c, @ is the angle of incidence (reflection); we will omit these fac- 
tors below. Such a solution for temperature, pressure, and velocity components can be writ- 
ten for the upper medium to an accuracy of terms insignificant for the present problem in 
the form: 

P = Q~pc 2, u = A Q  -~ c s in  O.Q2, 

c sin 0 dQ~ ( 1 . 3 ) rn'q dQ " d Q i  , T = ~' -- i (AIQ1 + Q~). 
v = A -'Z" ~ -4- A~(? - -  t)  Z'-~f  + m du "-W-- 

(V-;) Here u and v are the components of the velocity v along the x and y axes; Q= exp i -~-y ; 

, ( V-h- 11 Q~==k~[exp (--ik cos 0.y) -~ A2 exp (iL cos 0.y)]; A, A1, As are undefined constants. Q l = e . . p  i --~-g ; 
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The function Q2 has the sense of a set of incident and reflected waves at a distance from 
the phase boundary sufficiently great that the effects of temperature and dynamic boundary 
layers may be neglected; A2 is the reflection coefficient. 

For the lower medium the expressions for the temperature and velocity are analogous to 
Eq. (1.3), with 

Q~ = A ~ k  '2 exp ( - -  i k ' y  cos 0') .  

Here the primes indicate values for the lower medium; 0' is the angle of refraction; Q~ has 
the sense of the wave which passes through the medium; A~ is the transmission coefficient. 
Moreover, we assume here the absence of complete internal reflection of sound from the phase 
boundary (subcritical angle of incidence). The case of supercritical angle of incidence will 
be considered below. 

In the linear approximation boundary conditions on the perturbed phase boundary can be 
replaced by conditions on an unperturbed plane. Thus, at y = 0 the following expressions 
must be satisfied [with consideration of Eq. (1.2)]: 

u = u ' ,  v = v ' ,  T = T ' ,  • = • pau/@ = ~ ' O u ' / O y ,  ( 1 . 4 )  

P = p ' .  

I t  i s  a s s u m e d  h e r e  t h a t  t h e  s t a t i c  t e m p e r a t u r e  a n d  p r e s s u r e  i n  b o t h  m e d i a  a r e  t h e  same a n d  
that ~ = vp. 

Substituting Eq. (1.3) in boundary conditions (1.4), we obtain a system of algebraic 
equations in the unknown constants A, Al, A2, A' ' ' , At, A2. Solution of this system gives an 
expression for the reflection coefficient 

A2 = cos0 - - ( p c / p ' c ' ) c o s O ' - -  M 
cos0 4- ( p c / p ' c ' ) c o s O ' 4 -  M (1.5) 

and transmission coefficient 

, (2p/p') cos 0 
A~ = cos 0 4- (pc/p'c') cos 0' q- M ' ( I  .6) 

where 

M =  sin:O . . . . .  t Jf' Vt: + (1.7)  

If we neglect viscosity and thermal conductivity (take M = 0), then Eqs. (1.5), (1.6) 
transform to Rayleigh's expression [2]. 

If p/p' § 0, then Eq. (1.5) transforms to Konstantinov's expression [3] for the case 
of a rigid wall with infinite thermal conductivity. If p/p' + 0, but ~p/~'p'-+oo , then Eq. 
(1.5) also transforms to Konstantinov's result [3], but for the case of a rigid thermally 
insulated wall. 

The absorption coefficient, defined as the ratio of the mechanical energy dissipated 
per unit time in the boundary layer near the phase boundary to the energy flux incident from 
the upper medium, is equal to 

D = l - -  A2.z~ f)'c cos 0' a ' ] '  

(we deal here with the time-averaged absorption coefficient, and the bar denotes a complex 
conjugate value). Using Eqs. (1.5), (I .6), we obtain 

where 

where M R is the real part of M, Eq. 

It is evident from Eq. 
zero when X ~ I while Y ~ I. 

D = 4 X I [ ( X  4- Y 4- 1) 2 + t ], 

X cos O/MR, Y = 9c cos O'/(p'c'MR), 

( 1 . 7 ) .  

(1 .8)  

( I  .9) 

(1.8) that the absorption coefficient D differs markedly from 
In particular, the maximum absorption coefficient occurs when 



X = /7, Y = 0, or with consideration of Eq. (I .9), 

cos O/M R = l / ' ~  Oc cos e' / (p 'c 'MR) = O. ( 1 .1  O) 

Then 

n = n m a x  = 2 ( ] / ' 2 - - 1 )  ~ 0 , 8 3 .  ( 1 . 1 1 )  

Thus, the largest value of the absorption coefficient which can exist for the passage 
of a sound wave through the phase boundary between two liquids is not related to any prop- 
erties of the liquids or the frequency of oscillation, but is given by Eq. (1.11). This re- 
suit was obtained for the special case of sound reflection from a rigid wall in [3]; it can 
be seen, however, that it remains valid for the general case of sound transmission through 
the phase boundary between arbitrary liquids. 

The second equation of conditions (1.10), which when satisfied produces a maximum ab- 
sorption coefficient, Eq. (1.11), can be satisfied in two ways: first, if 0/P' = 0 (where we 
arrive at the case considered in [3]); second, if cos 0' = 0 (in this case we have c'/c ~ I, 
and the angle of incidence is equal to the critical 0cr). In accordance with this we rewrite 
the first condition of Eq. (1.10) in the form 

~rl -- (c/c') ~ = M R ]/Z ( I. 1 2) 

Thus, the maximum absorption coefficient Eq. (1.11) is attained at the critical angle 
of incidence, if Eq. (1.12) is satisfied. Since no limitations are placed on the quantity 
p/p' here, as follows from Eq. (1.7) the value of MR may be large in comparison to unity 
(if p/p' ~ I), and then Eq. (1.2) can be satisfied at critical angles of incidence far from 
~/2. This is a significant difference between the present case and the case where p/p' = 0 
[where M R is small, and thus, as is evident from the first condition of Eq. (1.10), the angle 
of incidence must be close to ~/2]. 

We will note the unique symmetry of the phenomena of attaining maximum absorption coef- 
ficient (1.11) upon the onset of total internal reflection (cos 0' = 0) with respect to the 
same phenomenon at p/p' = 0. 

If p/p' § ~, then it follows from Eqs. (1.7)-(1.9) that D + 0. Thus in reflection of 
sound from a free surface absorption of sound energy does not occur. 

2. At supercritical angles of sound incidence c'/c ~ I and 0 ~ 0cr. In order to obtain 
an expression for the reflection coefficient, in Eq. (1.5) we perform the replacement 

cos O' = i ~  ~'/c) 2 sin~O - -  t = in, 

where n is a real positive quantity. Since in the case of complete internal reflection radia- 
tion of sound energy into the lower medium does not occur, for the absorption coefficient 
we have D = I -- A2A2, or 

D = 4 X / [ ( t  + X) ~ § (I + Y)~I, ( 2 . 1 )  

where X - cos 0/MR; Y = pcn/(p'C'MR). As before, the highest value of absorption coefficient 
will be 2( 2~--- I) and is reached at X = 2~, Y = 0. Combining this result (for supercritical 
angle of incidence) with that obtained above (subcritical angle of incidence), it can be said 
that when Eq. (1.12) is satisfied the absorption coefficient, considered as a function of angle 
of incidence, reaches its maximum value of 2( 2~--- I) when the angle of incidence passes 
through the critical value. 

The author thanks T. P. Zhizhina for much assistance in the study. 
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